The Semi-Symmetric Metric Connection – Part IV


General Relativity

With the underlying geometry of the space defined by the semi-symmetric metric connection (SSMC) having been explored, we’re now in a position to examine how Einstein derived his field equations for GR. We will be seeking to follow similar physically-motivated reasoning, such as he used for GR, in our search for candidate field equations which might add electromagnetism to GR based on the geometrical properties of the SSMC. Continue reading “The Semi-Symmetric Metric Connection – Part IV”

The Semi-Symmetric Metric Connection – Part II

Mathematical Preliminaries

In the previous post in this series, I gave the rationale for undertaking this extended (re-)examination of the geometry of the semi-symmetric metric connection (SSMC): essentially, it represents (to my mind) the most ultra-minimalist extension to General Relativity (GR) at all possible – or so I thought back in the early 1990s – given that it introduces precisely one new object – a vector field – as part of the connection. Continue reading “The Semi-Symmetric Metric Connection – Part II”

The Semi-Symmetric Metric Connection – Part I

The Background

Many years ago (getting close to 30 now), while doing my PhD (Voros 1996) in theoretical physics on mathematical extensions to General Relativity – and in particular, on Einstein’s own “unified field theory” – I happened across a book by Jan Schouten (1954) called Ricci-Calculus, which was an introduction (by a mathematician) to tensors and their applications, especially to geometrical thinking and analysis.

Continue reading “The Semi-Symmetric Metric Connection – Part I”

%d bloggers like this: